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Generic description of the degeneracies in Harper-like
models
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Received 21 April 1994, in final form 25 Acgust 1994

Abstract. We consider quantum Hamiltonians with one degree of freedom, pericdic both
in positdon and in momentum (Harper-like Hamiltonians). With the use of the Chem index
which topologically characterizes each spectral band and by a semi-classical description of the
tunnelling effect, we establish conditions under which spectral degeneracies may oceur. For a
generic family of Harper-like Hamiltonians Hyy, 4,3, we obtain that degeneracies are localized
on small ellipses aligned in one direction, in the space of external parameters v, 5.

1. Introduction

We will consider models of quantum mechanics on the torus 72, where the torus is the
phase space. These kind of models include the Harper model, and are mostly stndied in
solid state physics, for example, in relation with the integer quantum Hall effect [1], or with
superconductivity [2].

On the other hand, the simplicity of these models due to the compacify of the toroidal
phase space and the finite-dimensionality of the Hilbert space, makes them good models for
the study of the semi-classical limit and gquantum chaos [3, 4].

We will focus the study on possible degeneracies in the spectrum. Existence of
degeneracies is expected by a theorem of Von Neumann [5]: for Hermitian matrices
(Hamiltonian without time-reversal symmetry), degeneracies occur with co-dimension three.
This means that generically three external parameters have to be varied to find a degeneracy.

Degeneracies have been of special interest in physics since the discovery of Berry’s
phase [6, 7]. For example, if a stationary state is adiabatically carried along a closed path in
a parameter space, the phase gained can be decomposed into a well known dynamical part
and a geometrical part. Degeneracies have a direct influence on this geometric phase which
can become apparent in interference effects [8]. In this way, degeneracies play a major role
where adiabatic transport is involved: in the Aharonov-Bohm effect, in molecular physics
beyond the Bohr-Oppenheimer approximation [10], in solid state physics with the Hall
effect [1].

For the Harper-like models considered in this study, the spectrum has a finite band
structure. To each band r, » = 1 — N, is associated a topological integer Chern index
C,. For a given classical Hamiltonian H{g, p:) on the torus {a function of two conjugate
dynamical variables (g, p)), the quantum one H depends on two guantal parameters (6, ;)
related to the periodicity conditions of the wavefunction. Degeneracies are of co-dimension
three so with one external classical parameter, say p, degeneracies may occur in the
spectrum. Avron ef a/ [11] have shown that for a one-parameter-dependent Harper-like
model, an integer variation of the Chern index reveals the presence of a degeneracy.
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We ook for a description of the Chern index values (and so of the degeneracies locus),
for # — 0 in terms of classical dynamics. This paper uses this description and then places it
within the general study of semi-classical analysis. The classical limit # — 0 is equivalent
to N —» oo. This will be explained in section 2. Note that the classical dynamics has one
degree of freedom, so it is integrable. The semi-classical analysis which follows is based
on the existence of quasi-modes. Roughly speaking, a quasi-mode is a quantum state which
seems stationary for quite long times (over Ar ~ ™", r € N). A method to construct them
has been proposed in {18].

To study the degeneracy phenomenon, in general, we are led to consider a generic family
of Hamiltonians depending on a finite number of parameters Hy,, ., ..y Degeneracies
form a hypersurface of dimension P —1 in the P-dimensional space of external parameters,
So they delimit domains with a constant Chern index. Simon has shown that the generic
variation is =1 for two neighbourhood domains [9].

We look for rules which would give us the location of the degeneracies in the space
of the parameters. For Harper-like models, it is already known that generically {over the
space (Wi, ¥z, ... ¥p) and over the bands # = 1 — N, for N = +4o0) the Chern index
of a given energy band is zero. This result has been obtained numerically by Huo and
Bhatt [12]. The non-generic exceptions are due to a possible tunnelling effect between
different trajectories. For example Thouless ef @/ [1] have obtained non-zero values for the
Chern indices in a particular Harper model with trajectories symumetric under translation.
But when this symmetry is broken, the Chern indices get zero values, and correspondingly,
some degeneracies occur in the spectrum [13].

We will restrict the study to a two-dimensional generic family of Hamiltonians Hy, ;.
which possess two different families of trajectories in the extrema of the energy spectrum,
just like a double well potential. More precisely, the Chern indices will be calculated for the
bands whose energy is between the extrenum of the spectrum (the top or the bottom) and
the energy of the nearest non-contractible separatrix. In this range of energy, the classical
trajectories on the torus are contractible.

We will then obtain that in the two-dimensional space of classical parameters (¥, y2),
degeneracies are generically localized on loops (of exponentially small width) and those
loops are aligned in one direction, see figure 5.

In the next section, we precis the formalism of quantum mechanics on the torus. Then
in section 3, we calculate the Chern index of a given energy band when there is a possible
tunnelling effect between two trajectories. We then obtain two necessary conditions for the
Chern index to be non-zero.

Using these results in section 4, we describe the shape of the degeneracies location for
a generic family of Hamiltonians. Section 5 is devoted to a numerical illustration.

The following study uses mostly qualitative semi-classical arguments. The results could
probably be expressed more quantitatively by using the extensive studies performed by
Helffer and Sjéstrand concerning the semi-classical analysis of the Harper equation [14].

2. Quantum mechanics on the torus
We consider a one-degree-of-freedom classical Hamiltonian on the plane, periodic, with
periods Q in position, and P in momentum:

H(g.p)=H(g+Q,p)=H(g.p+ P). 0y

This planar phase space will be denoted P,p. By identifying all the domains of sides (@2, P)
in Py, the classical mechanics can be restricted to a torus. This toroidal phase space will
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be denoted ny 7,.
Quantum mechanically, (1) reads as

[Tg, A1 =[Tp, H] =0
where (f"Q, Tp) are the translations operators in position and momentum, respectively:
f‘Q = exp(—i@ p/h) Tr = exp(i P4 /).

The three operators H . f'Q, f"p commute if in addition [fQ, f’p] = (), which is equivalent o
QP = Nk with N € M. The classical limit (# — 0) is then obtained when N — +o00.

The total Hilbert space H = L2(R) can be decomposed as the direct sum of the
eigenspaces of operators f‘Q and Tp:

M= f f Hu (61, 05) d6y déy

_ Tp|¥) = exp (i01)|¥)

P, 0) {"“ . { T lW) = exp (i6) ) }

with (61, 82) € [0; 27[? related to the periodicity of the wavefunction under translations

by an elementary cell. This parameter space also has the topology of a torus and will be

denoted 7y = [0; 2[? . This decomposition forms, in fact, a non-trivial vector bundle [15].

Each space Hy (9, 82} is finite-dimensional: dimcHy (81, &) = N. So in each space
Huy 6y, G2), the spectrum is discrete:

B1W,(61,82)) = En(61, 8)1%, (61, 62)) n=1—>N.

But for » fixed, as (8;, 8;) are varied in [0, 27 [, the energy level E,(6, 6,) form a band
energy, and the eigenvectors |, (61, 62)) form a 2D surface in the projective space. This
surface is the base space of a complex-line-fibre-bundle whose topology is characterized by
an integer C,, the Chern index. It has been shown that C, characterizes the sensitivity of
eigenfunctions to changes of the boundary conditions (6, 62) [16, 4, 17].

For what follows, we introduce the operator of orthogonal ‘projection’ Pg, 5, on the

space Hy {6y, 62).

Z exp (—im 6y — inaf) f"g' f"}',’?) . 2)
{r maYe[—N NP

Its action on a state |} is to produce a Bloch state, periodic both in position and momentum
up to a phase (6 or &;).

Fower =\, (am—lr

3. Resonances between two contractible trajectories

Suppose that at a given energy E, the constant energy lines in phase space 7, are made of
two contractible trajectories denoted by I'y and I';. These trajectories belong to two different
families of contractible trajectories on the torus. We note |1) and |2), two semi-classical
stationary states (quasi-modes), localized respectively on each family, in the planar phase
space P,p, in the fundamental domain {0, @] x [0, P]. These quasi-modes are independant
of {61, &) and can be constructed for example by a method proposed by Paul and Uribe
[18]. A quantum state can be represented in the phase space P,, or 7., via the Husimi
distribution which is a positive function in phase space [19]. Saying that a quantum state
is localized on a trajectory means that its normalized Husimi distribution tends point-wise
to zero outside the trajectory, for # — 0. The energies of the quasi-modes |1) and |2} are
determined by Bohr—Sommerfeld quantization rule.
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For fixed values of (4;,6;), we can construct semi-classical states of the torus Top
{periodic on the plane} in the space Hy (6, 65):

(@) = Poayll)  19(8)) = P, yl2) .

If the two quasi-modes have nearby energy, evaluations of the exact stationary states |\ (8))
and |W_(6)), with energy E,(8) > E_(8) are obtained by diagonalizing the matrix of the
restriction of the Hamiltonian in the subspace generated by |\ (8)), |W.(8))

. (E8) &®)
H6) = ( (6) 52(9))

with E;(8) = (W;(6)|H|W;(8)), i = 1,2 and €(0) = (¥;(8)| A| U4 (8)).

3.1. Algebraic expression of the Chern index

We now wish to calculate the Chern index C, (respectively C_) of the family of states
|V, (@), 8 & Te=1I[0,2n]* (respectively [¥_(8)}).

From their definifion, the family of states |94 (6)) and |¥,(#)} are localized on the
trajectories I'y and I' in the torus Ty, for every value of 8. It follows from an argument
exposed in [29] or in [16] that their Chern index C; and C; are zero. Then because the
total Chern index is conserved [11] C. 4+ C_ = Cy + (3 =0, we deduce that C_. = —C..

To calculate the Chern index C,, we will use an algebraic characterization, see [20,
ch 1]: €5 is the algebraic number of intersection of the surface generated by |W..(6)) with
a hyperplan A, in the complex projective space of the Hilbert space. Here A will be the
space orthogonal to the state [¥). So C.. is the sum of the indices (« = £1) of the zeros
of the locally defined complex function fi(8) = (¥4 |¥.(8)). ¢ = 41 if the Jacobian of .
f+ is positive, : = —1 otherwise. Note that £,.(8) is only locally defined because after
diagonalization, [¥4(8)} is defined only within a phase that we can fix only locally. For a
more detailed discussion, see [17].

To overcome this obstacle, we consider the following complex function, globally defined
on the torus (8, &) € Tg:

(W[ (8))
{(Wa|W,.(8))
C, is then given by the sum of the indices (¢t = 1) of the zeros of the complex function
Fo(0), 8 € To =10, 2n1% )

Diagonalization of the matrix H(8) gives for 8 such that (8} = 0:

¢ _—E+(E2+1eP)”

E+ (B2 +[e)”? é
with E(8) = (E3(0) — E\(8))/2.

Now suppose that €(6%) = 0.
If E(6*) > 0 we have for 8 — &*

€
F.(0) = 0
+(©) E(1+ (1+[e/EX)') ~

Fi(8) =

F.(8)=

So 8* is a zero of F,.
If E(@*) < 0 we have for 8 — *.
—E(1+ (1 +1e|*/ED?) N
&b

|Fi(B) = +o0
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8% is a pole of Fy.
We have obtained the following result.
Consider the domain 77 (respectively T°, 7-):

T* = {6 e TgstE() > 0}

(respectively E(8) = 0, E(8) < 0). Moreover, we denote 8* the zeros of ¢(8) and

1(6*} = %1 their index. Then
Co= D ue". 3

G eT+

This last result is valid, in general, for computing the Chern index of eigenvectors of a
two-dimensional family of Hermitian matrices. Moreover, it is an cbvious result from
topological reasons, becanse a change of the Chern index occurs in a degeneracy. This
happens when a zero 8* crosses the border 7° (when €(8*) = 0 and E,(8%) — E;(8%) = 0).
To calculate the Chern index C_. there are now three steps: first we have to study the
sign of the function E(@). then to find the zeros of ¢(8), and finally to calculate C. with

(3).

3.2. Sign of E(6)

Let us write [1)¢n; 0y == TQ Tf," [1} which is the translation of the quasi-mode |1} localized
on the trajectory I'y ¢, .n,), ranslated of the trajectory I'y in the cell (n, #2). We similarly
define {2) ¢, ny) = f‘é‘ f‘;z [2) and the trajectory Iz (u, ).

From the definition of E{#) and (2), we obtain
E(0) = (E2 — E0)/2 o ({2[H|2) — (11H|1))/2

+ Y Refexp(—inifh — ina8) (2B 12Dy — (VA D mam)t @
el
with D, = {(Z x N) \ (=N x {0})] being the haIf-piane of ceils.

The term {IIH 1T} ny ne) (respectively (2|H [2}(n1.ne3) 1S exponentially small because it
corresponds to the tunnelling interaction between the quasi-mode |1) localized in the cell
(0, 0) and the quasi-mode |1)(y, »,) localized in the cell (n;, na) # (0, 0). (respectively for
[2} and |2}¢,, »,)). We write such an interaction term as

(1A u = Mg exp(iPz).
There exists semi-classical expression for tunnelling interaction term m exp(i®) between
two trajectories given in [21, 22, 14]

n~ o) Pexp(—msIm) | ®~ o )
where @, and w; are the classical frequencies of the trajectories and § is the classical
complex action between them. The main property we will use is that the modulus m
decreases exponentially fast with the distance and with the energy barrier between the
trajectories in phase space. d = |lm §| defines an effective tunnelling distance between the
two trajectories like the Agmon distance [23, 24]. Precisely the Agmon distance has been
defined in configuration space but not in phase space.

So generically, the moduli of the term in {4) can be ordered, and decrease exponentially:
13> mgq > mep > mge.... The dogninant term in the sum of (4) corresponds to a
tunnelling interaction {1[H|1},,, or (2|H|2}n,, with g, = (n;, n2) € Z2, see figure 1.
Then (4) can be written approximately as ’

E(8) ~ Eq ) -+ sgMga cos (Mg 6 — Pgy) ®)
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Figure 1. Schematic example of trajectories i"L(,,a,,.,} and T, (4,,5,) ON the periodic planar

phase space P,, decomposed in cells (nq, ny) € Z*. Here, the full line between trajectories
I'; and I, means that the dominant term of ‘auto-tunnelling-interaction’ in (4} is obtained
by (21A12) ¢, with modulus mgs. So mEs = (1,0). The dotted lines between trajectories I'y
and Iz, (1, .np) tepresent the tunnelling interaction terms in (7). The first three dominant terms of
moduli meg, Hrep. Mo are obtained with the cells ngy; = (0,0) , e = (0, ~1}, 1 =(1,0).

with the constant term Eqg = ({2|A12) — (11H]1))/2 and the sign sz = 1 corresponds
respectively to a dominant term (2|H|2)n., or {1|H|1)n,,.

3.3. Zeros of e(®)
€(8) is given by
(@) = (W A & Y (1 H 20, exP(—imy By ~ ingf) )

(m1, 422

Each term of interaction can be written in the form: (llf} 12)gnp,me) = Meexp(i®e). The
moduli m, of the terms in the sum can be ordered and generically they decrease exponentially
fast: 13> me, > Mg 3> me. . ... Keeping only the first three dominant terms, €(#) can be
written approximatively as

6(8) A Mo exXp(—ing 8 + i®e) + My exp(—inep 8 + iDp) + My exp(—ing 0 + idy.)

with Toea, R, Nec € Z2 being the cells of the first three closer trajectories 'y (y, ) from
the trajectory Iy in cell (0, 0), with respect to the Agmon distance (ef figure 1).

To pursue the calculation, we now suppose that § = det (T2eg — Teep ), (Mg — Nee}) =
1. This means that the three cell ne,, 7y, Rec are not aligned in the phase space P, and
that they enclose an area of one cell. For example, figure 1 gives § = +1.

We now consider the following bijective mapping: @ = (8),63) € [0, 27[?—> ¢ =
(¢1, $2) € [0, 27 [ modulus 27 given by

¢=NE+¢ [27] (8)
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axpl i
M, exp(i®) T 21

My exp{i €)

My, @xp( i &)

Figure 2. This diagram on the complex plane € shows the two solutions (qif:.qﬁf) of
€(p1, $2) = meg + mep explich) + me exp(igz) = O with the assumption that me, & meg, M1ep.

with N = ((Neg — Mep)s (Mg — Nee) ) € SL(2, Z) and ¢ = (Py; P2) = (Pep— Peus Pec—
®.,) € B2,

Note that {2} is defined with an arbitrary choice of phase. ®.;, Pep, Pec depend on this
phase, but @y, ¢4 do not.

‘We have

€(9) s EKP("‘iﬂeaa + iq’ea) €(¢'1 ’ ¢2)

with €(@, $2) = mee + Mep €Xp(ih1) + Mec eXplich).

The zeros of ¢(f) are obtained from those of €(¢, ¢-) with the inverse mapping of (8).
From figure 2 it is easy to see that €(¢y, ¢o) = 0 has two solutions _(qbf, ¢2*) provided that
Mep € [Meg — Me; Meg -+ Mee] and Moy K Mg, Mep:

(¢, ¢;) ™ (JT! cos™! (M)) with index (= -1
Mee ©)
(¢I", ¢;’) "2 (JT, —cos™! (md’T—mei)) with index t=+1.
(14

3.4. Two necessary conditions to have a non-zero Chern index

First let us remark that the function ¢(@) has values in C, which is a contractible space.
The sum of the indices over all its zeros is therefore equal to zero: 3 g .y (8*) = 0.
Mathematically, the Brouwer degree of €(@} is zero [25]. From (3) we deduce that if the
sign of E(@) is constant (7 = Tg or 7+ = @) then C; = 0. Therefore, in order that
Cy # 0, it is necessary for E(8) to change sign. From (6), E(g 0y must be in an exponentially
small neighbourhood of zero: |Egql < mg,. It is, in fact, the well known ‘resonance
condition’ between the two quasi-modes |¥4) and ) QIH12) = (1B 1) {Emgq).

Secondly, in order to make ¢(#) vanish, we found that we must have m., & mgp (m.).
This means that the two nearest representative, of trajectory I'; on the plane 7, must be
at equal (Agmon) distance from the trajectory I'y. This is an ‘equidistance condition’ (see
figure 3).
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P,
I,
I-E o 2(1,0)
ma‘a . 4" ITIE:
e - 4""'.
\-\_,' 1’:' - Yam
> q
My
[ o]
I
2,{0,-1) Figure 3. Mlvstration of the second necessary
. ‘equidistance’ condition to have a non-zero
LR HRIpC Chern index; Mmep € [Meq ~ Mol Meg +
tee) if Mee <4 meg, Mgy, The two nearest '
representatives of trajectory I'y on the plane
Pyp (here T3 and Iz, ,-.1y) must be at equal
tunnelling distance from the trajectory T'y.

4. Qualitative aspect of the degeneracy lines

If we consider E(g gy and m, as independant parameters, from the previous paragraph we
deduce that in the two-dimensional space (Eq gy, Mep), the Chern index Cy is zero outside
a small peighbourhood of the point {(Egg), #ep)} = (0, me,). The degeneracy line which
surrounds the domain C.,. 5 O form a compact curve in this neighbourhood. We find this
degeneracy line by solving the system {E(8) = 0; €(8) = 0} using the above expressions
(6), (8) and (9).

Let X = (Mep — Meg)/(Mee) and ¥ = (—spE.g)/(m5.). The system is equivalent to

p=NO+¢ [27] ¢ = (, £cos~ (X)) Y = cos(np,0 — $g,) (10)
and gives .
X=cos{t + Py Y =cos(rt + ) (1)

with t € R, r = § det(n.e ~ Mep; Nz} € Z and ¥ = (8 det{ng,; My — N — O —
Dg,) e R |

If |8] = 1, the system (10) can be solved and instead of (11), we obtain parametric
equations for a finite number of Lissajou curves. But we have not found examples of
Hamiltonians where [r| > 1 nor {8] > 1 may be realized.

So we now suppose that r = =i. The degeneracy line is therefore an eilipse, As
we have said, outside the ellipse the Chern index is C4 = 0. Inside, the Chern index is
obviously C,. = =+1. From (3) we calevlate: C = sign(sz3 sin(\ — o).

Up to now, we have emphasized the direct link there is between the Chern index
value and the degeneracies. But from its own definition the Chern index informs us on
the stationary states {¥..(8)), | ¥_(8))}, especially on their density on the phase space Ty,
depending on @ = (6;,8;). If the Chern index is non-zero, we have seen that for a
special value &%, (44(@*)|W..(6%)) = 0. It means that the stationary wavefunction of
| WL (8")) (more exactly its Husimi distribution on phase space [13]) is totally localized on
the trajectory I's. Respectively, the stationary wavefunction of |¥_(8")} is totally localized
on the trajectory I'y. For this special value 8" and concerning quantum mechanics in the
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Hilbert space Hy(61, ) (and not £2(R)), we deduce that there is no tunnelling effect
between the two trajectories. Conversely, for another value 8™, the state |W,(6*%)) is
localized on the trajectory I'y. So for intermediate values of 8, the Husimi distribution of
the stationary states on phase space are equally distributed on trajectories I'y and I';, and
tunnelling effect occurs. Such a relation between the Chern index value and localization of
the wavefunction on the phase space has been put forward by Khomoto [17] in terms of
the zeros of the wavefunction in phase space.

Now we discuss the qualitative aspect of the degeneracy lines in the space of external
parameters of the classical Hamiltonian. Let us consider a generic two-dimensional family
of classical Hamiltonians Hy, ;,) having two different families of contractible trajectories.
This means that we are assuming that the set {{g, p)/H (g, p) = E} has two contractible
connected components Iy and ;.

The degeneracy equations (11) depend on the parameters X, Y, $2, ¥ where various
tunnelling interaction terms m exp(i®) are involved. From the semi-classical expressions
of these terms, (5), we deduce that a classical parameter y may have an influence) of order

(@m/fay) ~ (m/h) and (8®/3y) ~ (1/R).
Then for the parameters of (11):

(8X/0y) ~ (meg)/(hmec) (8Y/3y} ~ (1/(hmg,))

(9®,/3y) ~ (1/h) (8%/ay) ~ (1/R).

Thus if  is varied on a scale Ay <k, P, and ¥ can be considered as constant. On
that scale, (31, y2) are then generically mapped on (X, ¥). From the previous section, we
deduce that in the space (i, y2), the degeneracy line is an ellipse inscribed in 2 rectangle
centered in (1, yu) = (3", v3) with sides exponentially smali. If 34 is associated with X
and y; with ¥, these two sides can be calculated from the previous evaluations

2
Ap ’ai;(ll"“x ~ (himee)/ (mep) ~ hexp(—{de — dp)/ )

Ay = 12—};2 AY ~hmg, ~ hexp(—dg/h)

where dg, dp and 4, are the Agmon distances corresponding to the tunnelling interaction
terms mgq, Mep and mee, respectively (see figure 1).

More intuitively, we found, in the previous section, that in order to have a non-zero
Chern index, two necessary conditions must be fulfilled. Each of these two conditions
are of co-dimension one. For example, the ‘resonance condition’ can be realized by
varying the action of the trajectories of the second well (the phase space surface of the
trajectory), here 2. The second ‘equidistance condition’ can be realized by varying the
mutual distance between the two trajectories, here y;. The particular value of these two
parameters, (31, v2) = (¥y, 4 ), corresponds to the case where the two conditions are both
satisfied, see figure 4.

Moreover, the energy spacing is of order AE ~ A. If y is varied, the rescnance
condition will be fulfilled again between two different quantum levels. In this way, we
expect a series of degeneracy ellipses, aligned in one direction, with a mutual distance of
order A'ys ~ AE/(BE/8ys) ~ h, see figure 5. These ellipses may be non-equivalent
because on a scale A'yy ~ B, ®; and ¥ may have changed.
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Figure 4. Two families of contractible trajectories 1, 'z (in the neighbourhood of £ =
H{g, 7)), for a two parameters dependant Hamiltonian Hey,.yq). Here yr is the mutnal distance
between the twe trajectories and ¥ is the action of the trajectory 2. The equidistance condition
is satisfied for 31 & yy'. The resonance condition (same action of the two trajectories) is satisfied
for ya 7y, Then the Chem index of a given band is Cr = 1 in a neighbouwrhood of {11, 1)
limited by a closed degeneracy line, outside of which C, = 0.
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Figure 5, Schematic representation of the degeneracy lines for a given level of a generic family
of Harper-like Hamiltonian, with two wefls. Each degeneracy line is an exponentially small
ellipse. These ellipses take place at the intersection of the line corresponding to the equidistance
condition, with the transverse lines corresponding to the resonance condition, Inside the smail
ellipses, the Chern index is £1 and outside it vanishes.

5. Numerical illustration

In order to illustrate the previous analytical result, let us consider the following Hamiltonian
dependent on one parameter ¢ € [0, 2] which has a double well, We take Q = P =1,

H,(q, p) = — cos(2mq) — cos(dnp) — ; cos (4ng + L) — y cos(2mp). (12)
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Figure 6. Energy levels of the classical Hamiltonian #, (12). Families of trajectories 1 and 2 are
in the upper part of the spectrum and families 3 and 4 in the lower part. (@) ¥ = 0. Trajectories
"y and P encircling the points 1 and 2, respectively, are symmetric under a teanslation in
momentum. (¥) ¥ = 1. The symmetry under transiation is broken, Trajectories I'| and 'z
get closer to each other, like on figure 4 for the schema corresponding to ) < /', 12 = ¥4
For a given energy, the action of trajectories 4 increases, like on figure 4 for the schema
corresponding to ¥ = ', ¥2 > 15

The constant energy curves in the torus 7, are displayed in figure 6. We denote by I'y and
I, the two families of trajectories with positive energy, encircling the points 1 and 2, and
by I's and Iy the two families of trajectories with negative energy.

The Hamiltonian (12) is quantized by replacing the dynamical variables (g, p) by the
operators of position and momentum §, 5, respectively.

From figure 6, we guess that the dominant term of tunnelling interaction comes from
the cells pictured in figure 1: ng, = (1,0), n, = 0,0), ne = (0, -1, n, = (1,0).
This numerical example therefore corresponds to the case treated in all the previous figures.
There is, however, a slight difference: the numerical example presented here does not satisfy
the generic conditions: because of the translation symmetry, for y = 0, the dominant term in
{4) comes equally from (III:IIT [1)¢1,00 and (2[1‘? |2}¢1.0y. But this does not medify qualitatively
the resulis because [2) = Tpj|1), and we have (1|H|1),0) = exp(in M)(2|H[2) .00, If N
is odd, in (6} and everywhere, mg, is changed by 2mg,.

For y =0, the trajectories I'; and I'y are symmetric under the translation f‘pﬁ. So the
conditions of resonance and equidistance are both fulfilled. We therefore expect the Chern
indices to be non-zero. The same statement can be made for the trajectories I'; and 'y, As
concerns the corresponding bands, we can say that in the parameter space diagram, figure 5,
their representative point lies inside the little loop, on the point (y], ¥7), surrcunded by a
degeneracy line,

For y # 0, the symmetry under translation is broken.

The family of trajectories I'y and I's, however, conserve a symmetry by reflexion with
respect to the line p = % Therefore the resonance condition is still satisfied. But the
trajectories 'y and 'y get closer in the phase space, so the second condition of ‘equidistance’
is not fulfilled. In agreement with the schematic representation of figure 5, where y acts as
w1, the representative point in the parameter space gets out of the small ellipse and lies on
the half line y; < y*; ¥ = ¥; when y increases. So a degeneracy occurs and the Chern
indices change to zero.
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Figure 7. Numerical calculation of the energy bands and Chern indices of H (12), for N = 11
bands. For y = 0, all the Chern indices are C = +1. A variation of the Chern index is
marked by a vertical line which indicates a degeneracy. Remark on the details that there are
degeneracies in y # 0.

Figure 7 shows the energy bands and Chern indices of the spectrum of H obtained by a
numerical calculation. We observe the phenomenon we are discussing in the upper part of
the spectrum, for the states W;q and ¥4,. The two bands remain close to each other because
the resonance condition is always satisfied.

Concerning the families of trajectories I'; and I'y, a quite analoguous description can be
made. This time, the equidistance condition is always fulfilled, but the resonance condition
is not satisfied when y # 0. Now the parameter ¥ plays the same role as the parameter y,
of figure 5. As y increases, the representative point gets out the ellipse on figure 5, and
lies on the line y; = y{*. So a degeneracy occurs, the Chern indices change to zero before
crossing an other ellipse at the position y, = y;*.

Indeed, in figure 7 we observe that the two levels ¥; and ¥, get away from each over
in agreement with the Bohr-Sommerfeld semi-classical quantization rule for each family of
trajectory. At the very beginning y ~ 0.01 there is a degeneracy which makes the Chern
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index change to zero. For y ~ 0.6, the ground state W, of the family of trajectories I's
crosses the first excited state W; of the family of trajectories I'y. At that point, there is a
resonance, accompanied by degeneracies which change the Chern indices. It corresponds
to the crossing of a second small ellipse of figure 5 at the value ¥;”.

6. Conclusion

We have obtained a semi-classical description of the degeneracies occurring far away
from the first non-contractible separatrix in the spectrum- of Harper-like models with two
wells. The present description could be generalized for arbitrary Hamiltonians with an
arbitrary number of wells and to the whole spectrum, even for non-contractible trajectories,
with non-trivial expected results, In [1], Thouless et al have shown that for a particular
Hamiltonizn with trajectories syminetric under translation, the Chern indices are the solution
of a diophantine equation.

The results presented here are similar to those obtained by Colin de Verdiére [24], and in
the same spirit of studying a generic family of Hamiltonians instead of a fixed Hamiltonian.
He has studied degeneracies occurting in the botiorn of the specirurn with the tunnelling
effect, for an arbitrary potential but without magnetic field.

Two-dimensional Bloch electrons in a strong and uniform magnetic field are described
by an effective one-dimensional Harper-like Hamiltonian H{g, p). Thouless et af [1] have
shown that the quantum hall conductivity o,, is related to the Chern index. Figure 5 then
describes the oy, Hall conductivity for different potential shapes. The Hall conduetivity of a
given electronic band is then non-zero inside a small ellipse. There is some hope to observe
such phenomena in experiments related to mesoscopic physics (quantum dots) [27, 28],
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