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AbstracL We consider quanNm Hamiltonians with one degree of freedom, periodic both 
in position and in momentum (Harper-lie Hamiltonians). With the use of the Chem index 
which mpologically characterizes each spechal band and by a semi-classical description of the 
tunnelling effect, we establish conditions under which spectral degenencies may occu. For a 
generic family of Harper-like Hamiltonians H(y,.n,. we obtain that degeneracies are localized 
on small ellipses aligned in one direction, in the space of external p m t m  YI , M 

1. Introduction 

We will consider models of quantum mechanics on the torus T’, where the torus is the 
phase space. These kind of models include the Harper model, and are mostly studied in 
solid state physics, for example, in relation with the integer quantum Hall effect [l], or with 
superconductivity [Z]. 

On the other hand,, the simplicity of these models due to the compaciiy of the toroidal 
phase space and the finitedimensionality of the Hilbert space, makes them good models for 
the study of the semi-classical limit and quantum chaos [3, 41. 

Existence of 
degeneracies is expected by a theorem of Von Neumann 151: for Hermitian mahices 
(Hamiltonian without time-reversal symmetry), degeneracies occur with co-dimension three. 
This means that generically three external parameters have to be varied to find a degeneracy. 

Degeneracies have been of special interest in physics since the discovery of Berry’s 
phase [6, 71. For example, if a stationary state is adiabatically carried along a closed path in 
a parameter space, the phase gained can be decomposed into a well known dynamical part 
and a geometrical part. Degeneracies have a direct influence on this geometric phase which 
can become apparent in interference effects [SI. In this way, degeneracies play a major role 
where adiabatic transport is involved in the Aharonov-Bohm effect, in molecular physics 
beyond the Bohr-Oppenheimer approximation [lo], in solid state physics with the Hall 
effect [l]. 

For the Harper-like models considered in this study, the spectrum has a finite band 
structure. To each band n, n = 1 + N ,  is associated a topological integer Chem index 
C,. For a given classical Hamiltonian H ( q ,  c) on the torus (a function of two conjugate 
dynamical variables (4. p ) ) ,  the quantum one H depends on two quantal parameters (el,6’Z) 
related to the periodicity conditions of the wavefunction. Degeneracies are of co-dimension 
three so with one external classical parameter, say y .  degeneracies may occur in the 
spectrum. Avron el al [ l l ]  have shown that for a one-parameter-dependent Harper-like 
model, an integer variation of the Chem index reveals the presence of a degeneracy. 
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We will focus the study on possible degeneracies in the spectrum. 
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We look for a description of the Chern index values (and so of the degeneracies locus), 
for h + 0 in terms of classical dynamics. This paper uses this description and then places it  
within the general study of semi-classical analysis. The classical limit A --t 0 is equivalent 
to N -+ CO. This will be explained in section 2. Note that the classical dynamics has one 
degree of freedom, so it is integrable. The semi-classical analysis which follows is based 
on the existence of quasi-modes. Roughly speaking, a quasi-mode is a quantum state which 
seems stationary for quite long times (over AI - E - " ,  II E PI). A method to construct them 
has been proposed in [IS]. 

To study the degeneracy phenomenon, in general, we are led to consider a generic family 
of Hamiltonians depending on a finite number of parameters H(,,,,,,,.,,). Degeneracies 
form a hypersurface of dimension P - 1 in the P-dimensional space of extemal parameters. 
So they delimit domains with a constant Chern index. Simon has shown that the generic 
variation is il for two neighbourhood domains [9]. 

We look for rules which would give us the location of the degeneracies in the space 
of the parameters. For Harper-like models, it is already known that generically (over the 
space (yl, yz, . . . yp)  and over the bands n = 1 -+ N ,  for N 4 +CO) the Chern index 
of a given energy band is zero. This result has been obtained numerically by Huo and 
Bhatt [12]. The non-generic exceptions are due to a possible tunnelling effect between 
different trajectories. For example Thouless et a1 [I]  have obtained non-zero values for the 
Chem indices in a particular Harper model with trajectories symmetric under translation. 
But when this symmetry is broken, the Chern indices get zero values, and correspondingly, 
some degeneracies occur in the spectrum [13]. 

We will restrict the study to a two-dimensional generic family of Hamiltonians H(n,m) 
which possess two different families of trajectories in the extrema of the energy spectrum, 
just like a double well potential. More precisely, the Chern indices will be calculated for the 
bands whose energy is between the extremum of the specmm (the top or the bottom) and 
the energy of the nearest non-contractible separatrix. In this range of energy, the classical 
trajectories on the torus are contractible. 

We will then obtain that in the two-dimensional space of classical parameters (yl, yz), 
degeneracies are generically localized on loops (of exponentially small width) and those 
loops are aligned in one direction, see figure 5. 

In the next section, we precis the formalism of quantum mechanics on the torus. Then 
in section 3, we calculate the Chern index of a given energy band when there is a possible 
tunnelling effect between two trajectories. We then obtain two necessary conditions for the 
Chem index to be non-zero. 

Using these results in section 4, we describe the shape of the degeneracies location for 
a generic family of Hamiltonians. Section 5 is devoted to a numerical illustration. 

The following study uses mostly qualitative semi-classical arguments. The results could 
probably be expressed more quantitatively by using the extensive studies performed by 
Helffer and Sjostrand concerning the semi-classical analysis of the H q e r  equation [14]. 

2. Quantum mechanics on the torus 

We consider a one-degree-of-freedom classical Hamiltonian on the plane, periodic, with 
periods Q in position, and P in momentum: 

H ( q , p )  = H ( q  + Q , p )  = H ( q , p + P ) .  (1) 
This planar phase space will be denoted PqP. By identifying all the domains of sides (Q, P)  
in Pqp, the classical mechanics can be restricted to a torus. This toroidal phase space will 
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be denoted ny ‘&. 
Quantum mechanically, (1) reads as 

[?e, k] = [fp, k] = o 
where (?Q, f p )  are the translations operators in position and momentum, respectively: 

= exp(-iQj/h) ?p = exp(iP@/h). 

The three operators k, ?Q, f p  commute if in addition [?e, f p ]  = 0, which is equivalent to 
Q P  = N h  with N E N. The classical limit (h + 0) is then obtained when N -+ fco. 

The total Hilbert space 71 = Lz(R) can be decomposed as the direct sum of the 
eigenspaces of operators ?Q and f p :  

with (01,Oz) E [O; 2n[’ related to the periodicity of the wavefunction under translations 
by an elementary cell. This parameter space also has the topology of a torus and will be 
denoted % = [O; 2n[’ . This decomposition forms, in fact, a non-trivial vector bundle [15]. 

Each space x N ( @ I ,  &) is finite-dimensional: dimCKN(&, 0,) = N. So in each space 
‘H~(01, 02), the spectrum is discrete: 

f i i ~ ~ ( e ~ , e , ) )  = ~,(e~,e~)1~~(e~,e~)) n = I + N .  
But for n fixed, as (el,&) are varied in [ 0 , 2 1 r [ ~ ,  the energy level &(el. 6’2) form a band 
energy, and the eigenvectors [%(01,&)) form a ZD surface in the projective space. This 
surface is the base space of a complex-line-fibre-bundle whose topology is characterized by 
an integer C., the Chern index. It has been shown that C, characterizes the sensitivity of 
eigenfunctions to changes of the boundary conditions (01, &) [16, 4, 171. 

For what follows, we introduce the operator of orthogonal ‘projection’ &,&) on the 
space ‘HN(01,02). 

Its action on a state IW) is to produce a Bloch state, periodic both in position and momentum 
up to a phase (el or Oz). 

3. Resonances between two contractible trajectories 

Suppose that at a given energy E ,  the constant energy lines in phase space are made of 
two contractible trajectories denoted by rl and rz. These trajectories belong to two different 
families of contractible trajectories on the torus. We note 11) and 12), two semi-classical 
stationary states (quasi-modes), localized respectively on each family, in the planar phase 
space PqP, in the fundamental domain [0, Q] x [0, PI. These quasi-modes are independant 
of (el,&) and can be constructed for example by a method proposed by Paul and Uribe 
[IS]. A quantum state can be represented in the phase space Pnp or TP via the Husimi 
distribution which is a positive function in phase space [19]. Saying that a quantum state 
is localized on a trajectory means that its normalized Husimi distribution tends point-wise 
to zero outside the trajectory, for h + 0. The energies of the quasi-modes 11) and 12) are 
determined by Bohr-Sommerfeld quantization rule. 
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For fixed values of (&,6’z), we can construct semi-classical states of the torus I,, 
(periodic on the plane) in the space ‘ X H N ( O ~ ,  02): 

iww) = 40, ,d~)  iwe ) )  = 48, .&)~2) .  
If the two quasi-modes have nearby energy, evaluations of the exact stationary states IQ+(@) 
and lY-(8)), with energy E+(@ E-@) are obtained by diagonalizing the matrix of the 
restriction of the Hamiltonian in the subspace generated by IWl(O)), IVl(8)) 

with w e )  = (we)ifiiq(e)), i = 1,2 and €(e) = {wl(e)ifip2(e)). 

3.1. Algebraic expression of the Chem index 

We now wish to calculate the Chern index C+ (respectively C-) of the family of states 
lqt(8)), 8 E 5 = [O, 

From their definition, the family of states IqI(8)) and IYz(8)) are localized on the 
trajectories ri and rz in the torus ‘&, for every value of 0. It follows from an argument 
exposed in I291 or in [16] that their Chem index CI and CZ are zero. Then because the 
total Chern index is conserved [ 111 Ct + C- = C1 + CZ = 0, we deduce that C- = -C+. 

To calculate the Chem index C,, we will use an algebraic characterization, see [20, 
ch 11: Ct is the algebraic number of intersection of the surface generated by IrVt(0)) with 
a hyperplan N,  in the complex projective space of the Hilbert space. Here N will be the 
space orthogonal to the state I Q l ) ,  So Ct is the sum of the indices (i = i l )  of the zeros 
of the locally defined complex function f+(S) = (‘+~1@+(0)). i = +1 if the Jacobian of 
ft is positive, I = -1 otherwise. Note that ft(8) is only locally defined because after 
diagonalization, IY+(8)) is defined only within a phase that we can fix only locally. For a 
more detailed discussion, see [17]. 

To overcome this obstacle, we consider the following complex function, globally defined 
on the torus (e,, &) E 5: 

(respectively IYJe))). 

Ct is then given by the sum of the indices (i = il) of the zeros of the complex function 
F+(B), 8 E % = [O, 2 ~ 1 ~ .  

Diagonalization of the matrix g(8) gives for 8 such that ~ ( 8 )  # 0: 

with E ( @  = (&(e) - El(8))jZ. 
Now suppose that €(e*) = 0. 
If E(8’) > 0 we have for 8 + 8’ 

So 8’ is a zero of Ft. 
If E(8”) < 0 we have for 8 --t 8‘. 
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e* is a pole of F+. 
We have obtained the following result. 
Consider the domain 7+ (respectively T‘, ‘P): 

I+ = {e E i r s w e )  > 01 
(respectively E(@) = 0, E(@) < 0). Moreover, we denote 8* the zeros of €(e) and 
~ ( 8 ’ )  = f l  their index. Then 

This last result is valid, in general, for computing the Chern index of eigenvectors of a 
two-dimensional family of Hermitian matrices. Moreover, it is an obvious result from 
topological reasons, because a change of the Chem index occurs in a degeneracy. This 
happens when a zero e* crosses the border To (when €(e*) = 0 and E-&?*) - El(O*) = 0). 

To calculate the Chern index C+ there are now three steps: first we have to study the 
sign of the function E(@, then to find the zeros of E ( @ ) ,  and finally to calculate Ct with 
(3). 

3.2. Sign ofE(0) 

Let us write ll)<n,,f121 = f;@Il) which is the translation of the quasi-mode 11) localized 
on the trajectory r~ , (~ , ,~* ) ,  translated of the trajectory rI in the cell ( n l ,  n 2 ) .  We similarly 
define 12)(n,,ns) = f2@12) and the trajectory rz.(n,,nr). 

From the definition of E ( @ )  and (Z), we obtain 

E ( @ )  = wz - E ~ ) P  E ((zifiiz) - (iifiii))~ 
+ Relexp(-in16 - inze~)((2lfil2)(,,.,,) - (11fill)~,,,,n2))) (4) 

( m . n d E 4  

with Dn = ((E x W) \ (-W x (0))) being the half-plane of cells. 
The term (llfill)~n,,n~) (respectively (Z l~12)~n , ,n~) )  is exponentially small because it 

corresponds to the tunnelling interaction between the quasi-mode 11) localized in the cell 
(0,O) and the quasi-mode ll)(al,,,2) localized in the cell ( n l ,  nz)  # (0,O). (respectively for 
12) and 12)(,,,,,,)). We write such an interaction term as 

(lIfiI1)(n,,,,L) = mE exp(iQE) 
There exists semi-classical expression for tunnelling interaction term m exp(iQ) between 
two trajectories given in [21, 22, 141 

(5 )  
Re S m --(olwz)”*exp(-IImSl/h) ~ Q -  - 
2zh 

where 01 and wz are the classical frequencies of the trajectories and S is the classical 
complex action between them. The main property we will use is that the modulus m 
decreases exponentially fast with the distance and with the energy barrier between the 
trajectories in phase space. d = (Im SI defines an effective tunnelling distance between the 
two trajectories like the Agmon distance [23, 241. Precisely the Agmon distance has been 
defined in configuration space but not in phase space. 

So generically, the moduli of the term in (4) can be ordered, and decrease exponentially: 
1 >> >> m E b  >> m+ .... The dominant term in the sum of (4) corresponds to a 
tunnelling interaction (llHll)nen or (Zlfi12)nen with n~~ = ( n 1 , n z )  E iZ2, see figure 1. 
Then (4) can be written approximately as 

R5 E(0.0) + S E m E a  cos ( n E a e  - @ E a )  (6) 
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n =.1 nl=O n =1 
1 1 

Figure 1. Schematic example of trajectories h,(" I ) and rz.(n,.nz) on the penodic planar 

rL and r2,((,,,) means that tbe dominant term of 'autotunneUing-inton' in (4) is obfailed 
by (ZlirlZ)(~,o) with modulus m ~ ~ .  So nsa = (LO). The dotted lines between mjectories FI 
and rz.b,.nz) represent the tunnelling interaction terms in 0. The fint three dominant terms of 
moduli mea, mtb. m,, are obtained with the cells n,. = (0, 0) , n r b  = (0, - I )  , neL = (1,O). 

phase space Pqn decomposed in cells (nl. nz) E Z k' . Here, the full line between vajectories 

with the constant term E(o.0) = ((21A12) - (llfill))/2 and the sign SE = 51 corresponds 
respectively to a dominant term (21F?12)n, or (llfill)n80. 

3.3. ofc(e) 

c(0)  is given by 

Each term of interaction can be written in the form: (llk12)(n,,n2) = m, exp(iaP,). The 
moduli m, of the terms in the sum can be ordered and generically they decrease exponentially 
fast: 1 >> m,, >> mrb >> me,.  . . . Keeping only the first three dominant terms, c(0) can be 
written approximatively as 

c(0) e m,, exp(-in,,@ +iQea) + m,aexp(-in,bO + i%) + mac exp(-in,,@ + i W  

with ne., n r b ,  nCc E Z2 being the cells of the first three closer trajectories r2,(nl,n2) from 
the trajectory 

To pursue the calculation, we now suppose that S = det ((ne., - neb), (raga - nGc)) = 
kl. This means that the three cell n,,, rad,, ra,, are not aligned in the phase space Pqp and 
that they enclose an area of one cell. For example, figure 1 gives 6 = t 1. 

We now consider the following bijective mapping: 0 = (e , ,&) E [0.271[~+ 4 = 
($1, &) E [O, 2x[' modulus 2z given by 

& - = N e + +  ~2711 (8) 

in cell (0, O), with respect to the Agmon distance (cf figure 1). 
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c . I i 

Figure 2. ' I b i s  diagram on the complex plane C shows the two solutions (&,& of 
Z(q41, h) = m,. +m,a exp(i1) t mer exp(ib) = 0 with the assumption that m,, << meav m,b, 

With N = ((%= - %b); (mea - nc) )  E s L ( 2 .  z) and 4 = (@I; 0 2 )  = (@&-@eo; @cc- 

4<=) E R2. 
Note that 12) is defined with an arbitrary choice of phase. 

We have 

Qcc depend on this 
phase, but cP1, 92 do not. 

de) = exp(-in,.b + i @ 4  WI, 4) 

with WI, 4) = m,. + m,bexp(i$i) + mre exp(i42). 
The zeros of e ( @ )  are obtained from those of Z(&, 42) with the inverse mapping of (8). 

From figure 2 it is easy to see that a(&, 4) = 0 has two solutions ~(@, , & ) provided that 
m6b E [me, - met; m,. + m,,l and m,, <<meal mtb: 

* *  

3.4. nYo necessary conditions to have a non-zero Chern index 

First let us remark that the function <(e) has values in C, which is a contractible space. 
The sum of the indices over all its zeros is therefore equal to zero: I @ * )  = 0. 
Mathematically, the Brouwer degree of €(e) is zero [Z]. From (3) we deduce that if the 
sign of E ( @ )  is constant (P = 5 or T+ = 0) then C+ = 0. Therefore, in order that 
C+ # 0, it is necessary for E ( @ )  to change sign. From (6). E(o.0) must be in an exponentially 
small neighbourhood of zero: IE(g,ql c mEo, It is, in fact, the well known 'resonance 
condition' between the two quasi-modes IY1) and 1%): (2lfi12) 

Secondly, in order to make E(@) vanish, we found that we must have m,. Itl mcb (zkmcc). 
This means that the two nearest representative, of trajectory r2 on the plane Pqp must be 
at equal (Agmon) distance from the trajectory r1, This is an 'equidistance condition' (see 
figure 3). 

(l lf i l l)(*m~a).  
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m e r , ,  , , I .. ..* 
*. .' q 

r2,(o*-l) 

.--. 
. _ _ . I  

+-r2dl.o) 

,*+ ,- .I 
.*-. 

. ..-.* 
'4 

0 

Flgurr 3. Illushation of the second necessary 
'equidistance' condition to have a non-zero 

.__.I Chem Index: msb E [m,. - m,,:m,. t 
mccl if m,, << m,..m,b. The two nearest 
representatives of trajectory rz on the plane 
Ppp (here Tz and h,,o,+) must be at equal 
tunnelling distance from the tmjectory rI 

,--. 

4. Qualitative aspect of the degeneracy Lines 

If we consider Eo.,, and m,b as independant parameters, from the previous paragraph we 
deduce that in the two-dimensional space (E(o.o), m.a), the Chern index Ct is zero outside 
a small neighbourhood of the point (E(o.01, mcb) = (0, m*.). The degeneracy line which 
surrounds the domain Ct # 0 form a compact curve in this neighbourhood. We find this 
degeneracy line by solving the system { E ( O )  = 0; e ( @ )  = 01 using the above expressions 

- mc,) / (mSc)  and Y = (-sEE(O,O))/(mEa). The system is equivalent to 
(6),  (8) and (9). 

Let X = 

4 NO + @ [ Z X ]  4 = (z. &cos-'(X)) Y = C O S ( ~ ~ , O  - @ E ~ )  (10) 

and gives 

X=cos ( t+@*)  Y =cos ( r t+Y)  (11) 

- n&~ - (PI)  - 

If 181 > 1, the system (IO) can be solved and instead of (ll), we obtain parametric 
equations for a finite number of Lissajou curves. But we have not found examples of 
Hamiltonians where lrl > 1 nor 181 > 1 may be realized. 

So we now suppose that r = 41. The degeneracy line is therefore an ellipse. As 
we have said, outside the ellipse the Chern index is C+ = 0. Inside, the Chem index is 
obviously C+ = &l. From (3) we calculate: C+ = sign(sEasin(Y - (Pz)) .  

Up to now, we have emphasized the direct link there is between the Chern index 
value and the degeneracies. But from its own definition the Chern index informs us on 
the stationary states IC'+(@)), lY-(O)), especially on their density on the phase space q,, 
depending on 0 = (&,OZ). If the Chern index is non-zero, we have seen that for a 
special value e*, (Yl(O*)(Yt(O*)) = 0. It means that the stationary wavefunction of 
lYt(O*)) (more exactly its Husimi distribution on phase space [13]) is totally localized on 
the trajectory rz. Respectively, the stationary wavefunction of IY-(f?*)) is totally localized 
on the trajectory PI. For this special value 0' and concerning quantum mechanics in the 

with f E R, r = 8 der(n,, - n<b ;  ~ E J  E 2Z and Y = (8 det(nE*,; 
@ E o )  R. I 
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Hilbert space X,v(BI. 02) (and not L2(R)), we deduce that there is no tunnelling effect 
between the two trajectories. Conversely, for another value E"", the state IY+(O**)) is 
localized on the trajectory rj. So for intermediate values of 8, the Husimi distribution of 
the stationary states on phase space are equally dis@ibuted on trajectories rl and rZ, and 
tunnelling effect occurs. Such a relation between the Chern index value and localization of 
the wavefunction on the phase space has been put forward by Khomoto [ 171 in terms of 
the zeros of the wavefunction in phase space. 

Now we discuss the qualitative aspect of the degeneracy lines in the space of external 
parameters of the classical Hamiltonian. Let us consider a generic two-dimensional family 
of classical Hamiltonians H(y, .n,  having two different families of contractible trajectories. 
This means that we are assuming that the set ((4, p ) / H ( q ,  p )  = E )  has two contractible 
connected components and rz. 

The degeneracy equations ( 1  1) depend on the parameters X, Y, CJz? Y where various 
tunnelling interaction terms m exp(iCJ) are involved. From the semi-classical expressions 
of these terms, ( 5 )  we deduce that a classical parameter y may have an influencq of order 

Then for the parameters of (1 1): 

Thus if y is varied on a scale Ay  << h ,  CJz and Y can be considered as constant. On 
that scale, ( y ~ .  yz) are then generically mapped on (X, Y). From the previous section, we 
deduce that in the space ( y l ,  yz), the degeneracy line is an ellipse inscribed in a rectangle 
centered in ( y ~ ,  yz) = ( y r ,  y;I) with sides exponentially small. If yl is associated with X 
and yz with Y, these two sides can be calculated from the previous evaluations 

where d ~ .  db and d, are the Agmon distances corresponding to the tunnelling interaction 
term mE.. mrb and m,,, respectively (see figure 1 ) .  

More intuitively, we found, in the previous section, that in order to have a non-zero 
Chern index, two necessary conditions must be fulfilled. Each of these two conditions 
are of co-dimension one. For example, the 'resonance condition' can be realized by 
varying the action of the trajectories of the second well (the phase space surface of the 
trajectory), here yz. The second 'equidistance condition' can be realized by varying the 
mutual distance between the two trajectories, here y ~ .  The particular value of these two 
parameters, ( y l .  M) = (y;% y;). corresponds to the case where the two conditions are both 
satisfied, see figure 4. 

Moreover, the energy spacing is of order A E  - h. If y2 is varied, the resonance 
condition will be fulfilled again between two different quantum levels. In this way, we 
expect a series of degeneracy ellipses, aligned in one direction, with a mutual distance of 
order A'yz - AE/(aE/ay2) - h,  see figure 5. These ellipses may be non-equivalent 
because on a scale A'y2 - E ,  Qz and Y may have changed. 
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Of E = ~. . . 
H ( p ,  a)). for a two parameters dependant Hamiltonian H C ~ , , ~ ) .  Here yt is the mutual distance 
between the two Uajectories and n is the action of the trajectory rt, The equidistance condition 
is satisfied for yt % y;. The resonance condition ( s m e  action of the WO Uajectories) is satisfied 
for E % y:. Then the Chem hdex of a given band is C. = il in a neighbourhwd of Cy;. $1 
limited by a closed degeneracy line, outside of which C. = 0. 

line of the equidktancs // condiion 

degeneracy lines 

'1 _ . - . - . _ . - . - . ~ ~ ~ . - . - . - . . c , l i n e s  d the resonance 
,I.'. / mndltion 

Figure 5. Schematic representation of the degeneracy lines for a given level of a generic family 
of Harper-We Hamiltonian, with two wells. Each degeneracy line is an exponentiaUy small 
ellipse. These ellipses take place at the intersection of the line corresponding to the equidistance 
condition, with the transverse lines corresponding to the resonance condition. Inside the small 
ellipses, the Chem index is + I  and outside it vanishes. 

5. Numerical illustration 

In order to illuseate the previous analytical result, let us consider the following Hamiltonian 
dependent on one parameter y E [O, 21 which has a double well. We take Q = P = 1, 

(12) H&, p )  = - cos(2xq) - cos(4xp) - +cos (4x4 + ax, - y cos(2np). 
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Figure 6. Energy levels of the classical Hamilbnian H, (12). Families of trajectories I and 2 we 
in the upper part of the specmm and families 3 and 4 in the lower pan. (a) y = 0. Trajectories 
rl and r2 encircling the points 1 and 2, respectively. are symmetric under a translation in 
momentum. (b) y = 1.  The symmetry under translation is broken. Trajectories rl and r2 
get closer to each other, l i e  on figure 4 for the schema componding to y~ < vi, M = y;. 
For a %veri energy, the action of trajectories ra increases, like on figure 4 for the schema 
corresponding to y1 = y;, yz z y;. 

The constant energy curves in the torus T p  are displayed in figure 6. We denote by rl and 
rz the two families of trajectories with positive energy, encircling the points 1 and 2, and 
by r3 and r4 the two families of trajectories with negative energy. 

The Hamiltonian (12) is quantized by replacing the dynamical variables (q, p )  by the 
operators of position and momentum 4, b, respectively. 

From figure 6, we guess that the dominant term of tunnelling interaction comes from 
the cells pictured in figure 1: = ( l ,O) ,  n,, = (O,O), n e b  = (0, -I), n,, = (1,O). 
This numerical example therefore corresponds to the case treated in all the previous figures. 
There is, however, a slight difference: the numerical example presented here does not satisfy 
the generic conditions: because of the translation symmetry, for y = 0, the dominant term in 
(4) comes equally from (llfi[l)(,,o) and (21fi12)(l.,~,. But this does not modify qualitatively 
the results because 12) = ?ppIl), and we have (llfill)(t,o) = exp(irrAt)(21fi12)(,,o). If N 
is odd, in (6) and everywhere, mEa is changed by 2m8,. 

For y = 0, the trajectories rl and rz are symmetric under the translation f p p .  So the 
conditions of resonance and equidistance are both fulfilled. We therefore expect the Chern 
indices to be non-zero. The same statement can be made for the trajectories rs and r4. As 
concerns the corresponding bands, we can say that in the parameter space diagram, figure 5, 
their representative point lies inside the little loop, on the point cy;. y;), surrounded by a 
degeneracy line. 

For y # 0, the symmetry under translation is broken. 
The family of mjectories I‘l and rz, however, conserve a symmetry by reflexion with 

respect to the line p = 1. Therefore the resonance condition is still satisfied. But the 
trajectories I’, and r2 get closer in the phase space, so the secondcondition of ‘equidistance’ 
is not fulfilled. In agreement with the schematic representation of figure 5, where y acts as 
y,, the representative point in the parameter space gets out of the small ellipse and lies on 
the half line y, 4 y;; yz = y; when y increases. So a degeneracy occurs and the Chern 
indices change to zero. 
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Figure 7. Numerid calculation of the energy bands and Chern indices of H (12). for N = 1 1  
bands. For y = 0. all the Chem indices are C = *I .  A variation of the Chem index is 
marked by a venical line which indicates a degeneracy. Remark on the delails fhat there are 
degeneracies in y # 0. 

Figure 7 shows the energy bands and Chern indices of the spectrum of H obtained by a 
numerical calculation. We observe the phenomenon we are discussing in the upper parr of 
the spectrum, for the states *lo and *[I. The two bands remain close to each other because 
the resonance condition is always satisfied. 

Concerning the families of trajectories rs and r4, a quite analoguous description can be 
made. This time, the equidistance condition is always fulfilled, but the resonance condition 
is not satisfied when y # 0. Now the parameter y plays the same role as the parameter y2 
of figure 5 .  As y increases, the representative point gets out the ellipse on figure 5 ,  and 
lies on the line yl = y;. So a degeneracy occurs, the Cbern indices change to zero before 
crossing an other ellipse at the position n = y;*. 

Indeed, in figure 7 we observe that the two levels *I and \Ir2 get away from each over 
in agreement with the Bohr-Sommerfeld semi-classical quantization rule for each family of 
trajectory. At the very beginning y - 0.01 there is a degeneracy which makes the Chern 
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index change to zero. For y - 0.6, the ground state of the family of trajectories rs 
crosses the first excited state Ws of the family of trajectories r h .  At that point, there is a 
resonance, accompanied by degeneracies which change the Chem indices. It corresponds 
to the crossing of a second small ellipse of figure 5 at the value y;' . 

6. Conclusion 

We have obtained a semi-classical description of the degeneracies occurring far away 
from the first non-contractible separatrix in the spectrum'of Harper-like models with two 
wells. The present description could be generalized for arbitrary Hamiltonians with an 
arbitrary number of wells and to the whole spectrum, even for non-contractible trajectories, 
with non-trivial expected results. In [l]. Thouless et a1 have shown that for a particular 
Hamiltonian with trajectories symmetric under translation, the Chem indices are the solution 
of a diophantine equation. 

The results presented here are similar to those obtained by Colin de Verdiere [24], and in 
the same spirit of studying a generic family of Hamiltonians instead of a fixed Hamiltonian. 
He has studied degeneracies occumng in the bottom of the spectrum with the tunnelling 
effect, for an arbitrary potential but without magnetic field. 

Two-dimensional Bloch electrons in a strong and uniform magnetic field are described 
by an effective one-dimensional Harper-like Hamiltonian H ( q .  p). Thouless et a1 [l] have 
shown that the quantum hall conductivity uxxy is related to the Chern index. Figure 5 then 
describes the uXy Hall conductivity for different potential shapes. The Hall conductivity of a 
given electronic band is then non-zero inside a small ellipse. There is some hope to observe 
such phenomena in experiments related to mesoscopic physics (quantum dots) [27, 281. 
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